Collocated discrete least-squares (CDLS) meshless method: error estimate and adaptive refinement

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

collocation discrete least square (cdls) method for elasticity problems

a meshless approach, collocation discrete least square (cdls) method, is extended in this paper, for solvingelasticity problems. in the present cdls method, the problem domain is discretized by distributed field nodes. the fieldnodes are used to construct the trial functions. the moving least-squares interpolant is employed to construct the trialfunctions. some collocation points that are indep...

متن کامل

Local Error Estimates and Adaptive Refinement for First-order System Least Squares (fosls)

We establish an a-posteriori error estimate, with corresponding bounds, that is valid for any FOSLS L-minimization problem. Such estimates follow almost immediately from the FOSLS formulation, but they are usually difficult to establish for other methodologies. We present some numerical examples to support our theoretical results. We also establish a local a-priori lower error bound that is use...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

The L Norm Error Estimate for the Div-curl Least-squares Method for 3d-stokes Equations

This paper studies L2 norm error estimate for the div-curl leastsquares finite element method for Stokes equations with homogenous velocity boundary condition. The analysis using a different way from that in [11] shows that, without the divergence of the vorticity, the L2 norm error bound of the velocity is O(h 3 2 ) in the standard linear element method. AMS Subject Classification: 65N30

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical Methods in Fluids

سال: 2008

ISSN: 0271-2091,1097-0363

DOI: 10.1002/fld.1735